Practical chemical sensors from chemically derived graphene.

نویسندگان

  • Jesse D Fowler
  • Matthew J Allen
  • Vincent C Tung
  • Yang Yang
  • Richard B Kaner
  • Bruce H Weiller
چکیده

We report the development of useful chemical sensors from chemically converted graphene dispersions using spin coating to create single-layer films on interdigitated electrode arrays. Dispersions of graphene in anhydrous hydrazine are formed from graphite oxide. Preliminary results are presented on the detection of NO(2), NH(3), and 2,4-dinitrotoluene using this simple and scalable fabrication method for practical devices. Current versus voltage curves are linear and ohmic in all cases, studied independent of metal electrode or presence of analytes. The sensor response is consistent with a charge transfer mechanism between the analyte and graphene with a limited role of the electrical contacts. A micro hot plate sensor substrate is also used to monitor the temperature dependence of the response to nitrogen dioxide. The results are discussed in light of recent literature on carbon nanotube and graphene sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations.

Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO(...

متن کامل

DNA-decorated Graphene Chemical Sensors

Graphene is a two-dimensional material with exceptional electronic properties and enormous potential for applications. Graphene’s promise as a chemical sensor material has been noted but there has been little work on practical chemical sensing using graphene, and in particular, how chemical functionalization may be used to sensitize graphene to chemical vapors. Here we show one route towards im...

متن کامل

The Possibility of Selective Adsorption and Sensing of the Noble Gaseous Species by the C20 Fullerene, the Graphene Sheets, and the N4B4 Cluster

There are only a handful reports about the sensor systems having the ability of detecting the existence of the noble gases. Chemical reluctance of these gaseous species causes them to have no chemical interactions like hydrogen bonding with the chemically designed nano-sized sensors. Noble gasses usually have no atomic charges nor do change the total polarity of the molecular sensor systems. Th...

متن کامل

Oh, the places you'll go with graphene.

Since the first reported isolation of graphene by peeling graphite with cellophane tape in 2004, there has been a paradigm shift in research. In just nine years, graphene has had a major impact on fields ranging from physics and chemistry to materials science and engineering leading to a host of interdisciplinary advances in nanotechnology. Graphene is attractive because it possesses many extra...

متن کامل

Solvothermal reduction of chemically exfoliated graphene sheets.

We have developed a solvothermal reduction method that affords more effective reduction of chemically derived graphene sheets and graphite oxide than low-temperature reduction methods. Solvothermal reduction removed oxygen and defects from graphene sheets, increased the size of sp(2) domains, and produced materials that were as conducting as pristine graphene and exhibited clear intrinsic Dirac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2009